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LETTER TO THE EDITOR 
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Abstract In this letter we pment a dynamical Monte Carlo algorithm which is applicable to 
systems satisfying a clustering condition: during the dynamical evolution the system is mostly 
lrapped in deep local minima (as happens in glasses. pinning problems em). We compare the 
algorithm to the usual Monte Carlo algorithm using, as an example ule Bemasconi model. In 
this model, a stmightforward implemenmtion of the algorithm gives an improvement of several 
orders of magnihlde in computational speed with respect to a recent, already very efficient, 
implementation of the algorithm of Bortz er al. 

Direct dynamical simulations have traditionally played an important role in statistical 
physics. Investigations have covered a large range of problems, from dynamical phase 
transitions (e.g. the spinodal decomposition and the glass transition) to detailed, realistic 
simulations of polymers and long proteins in the sub-nanosecond regime. 

The macroscopic evolution of the system is always much slower than its microscopic 
Monte Carlo dynamics. This simply means that the problem of dynamical simulations is, 
almost by definition, a very difficult enterprise. 

In dynamical Monte Carlo simulations one considers Markov sequences of 
configurations 

UI(?I) - t u z ( ~ d . . .  + ui(?i)+ ~ i t l ( r i t l ) . ’ .  (1) 

where the symbols mean that the system will remain in the configuration ui during the 
time r;. For concreteness we imagine the configuration to stem from a spin model 
U = (SI, 5‘2,. . . , SN) with Si = f l .  In the single-spin flip Metropolis dynamics, the 
system can move from configurations ai to any configuration which differs from it by the 
flip of a single spin m, which we denote by dm]. The probability of making a move is then 
given by 

p ( u  + uLml, A?) 
if E(ulm1) < E(u) 

m = 1 ,  ..., N 
- E @ ) ) ]  otherwise 
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where E ( o )  is the energy of the configuration U. Usually, the sequence in ( I )  is directly 
simulated (with apnire time-step A r )  by means of a rejection method. In that case, the 
time intervals ri in (1) are multiples of Ar:  si = M A r .  At each timestep a flip of a 
randomly chosen spin m is attempted, and a uniform random number is drawn. Then 

At low temperatures, the MC dynamics often encounters the problem of small acceptance 
probabilities: as soon as the temperature is such that the available phase space is dominated 
by low-lying minima, the system will take a long time to move from a low-lying state to an 
excited one. The problem of small acceptance probabilities is certainly a nuisance, but not 
a true impediment to the simulation. Almost 20 years ago, Bortz, Kalos and Lebowib 111 
(BKL) showed how to circumvent it: in a nutshell, their algorithm consists of giving up the 
rejection method in favour of a direct calculation of waiting times, which can be calculated 
from the knowledge of all the transitions. In the above example, the time z8 the system 
will stay in a configuration ui can be directly sam led from its probability distribution 
p ( q )  = hexp(-hz;) with h = 
repeatedly (e.g. in [2,3]) over the last few years. A recent, very efficient implementation [4] 
has given improvements in computational speed of the order of 103-105 for glassy systems 
at low temperatures. 

If the problem of small acceptance probabilities has thus been effectively solved by 
the BKL algorithm, it is usually accompanied by another one, which we may call 'futile' 
dynamics: if the dynamical evolution is dominated by isolated deep local minima, the 
system will get trapped even though we force it to make transitions out of them: very 
shortly after having escaped a minimal configuration (by means of the BKL algorithm), the 
system simply falls back into it. This means that, at low temperature, the dynamics consists 
mostly of short cycles. 

The purpose of the present letter is to show that this problem can also be eliminated, 
and the power of the BKL algorithm increased by at least a few orders of magnitude. To 
give an illustration of the problem we are concerned with and to introduce the model which 
will serve as an example for our presentation, we show in figure 1 the result of a very long 

p ( q  + " ). The BKL algorithm has been used 

F i p e  1. Energy versu logi for the Bernasconi 
model a1 T = 0.05 for U single realization. The 
calculation was performed using the BKL algorithm 
in a very efficient implementation [4], The point 
marked 'X' serves as a sk i ing  point for subsequent 
simulations (cf figure 3). The second C U N e  gives 
the total number df different conAguntions visited 
(scale to the right). When on a 'plateau', the number 
of configurations increases roughly linearly in logt. 
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simulation of a single run of the Bernasconi model [5],  defined by the Hamiltonian 

The model defined in (4) has acquired some fame during the last years as an example of 
a ‘tough’ optimization problem. An inkling of why this is so can immediately be found 
from figure 1, in which we show the temporal evolution of a system of size N = 400 at 
a temperature T = 0.05. The simulation has gone over a time f = 3.9 x IO8, (i.e. has  
performed the equivalent of 3.9 x 10’ Monte Carlo steps per spin). The total number of 
accepted moves is around N,, = 2.1 x IO9, but the total number of different configurations 
visited, N&a = 1290, is very small. In an effort to be completely explicit, we restate 
that the small acceptance probability ( N , , / ( N t )  << 1) is related but not identical to the 
‘futility’ expressed by N&fi/Nm <( 1. On the second curve in figure 1 we display the total 
number of different configurations visited as a function of time. One can clearly see that 
this number grows very slowly whenever the system is within a given plateau of the energy. 
Many of the configurations are thus visited a large number of times. It should be evident 
that the total time the system spends in any of these configurations can be evaluated in a 
much more ef6cient way than by visiting them repeatedly. It can in fact be deduced from 
the Boltzmann dishibution. We have extensively tested this fundamental hypothesis of our 
method in simulations using the BKL algorithm. 

Now consider the schematic view of the algorithm presented in figure 2. This algorithm 
completely avoids the computational slowdown associated with repeated visits to the same 
configuration. In fact, it visits one new configuration per iteration. At any given time, there 
is an active set of configurations which make up the ‘cluster’ C. For any configuration i in 
C, we have stored, besides the energy E ( i ) ,  the total probability to move from site i to a 
configuration outside the cluster 

Now we suppose that the configurations in C are in quasi-equilibrium, i.e. we assume that 
the system visits configuration j with the probability given by its normalized Boltzmann 
weight 

Figure 2. Schematic view of the cluster Monte Carlo algorithm 
presented in this letter. 
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The (normalized) probability to m w e  from any configuration in C to a configuration outside 
C i s  thus given by xiGC pq(i)pext(i). Indirect analogy to the BKL algorithm, we then sample 
the time 5 the system will stay in C from its probabiIity distribution 

As before, A is the parameter of the exponential distribution of waiting times in the cluster, 
It should be evident that A can very quickly become a small quantity, which needs to be 
calculated with high-precision arithmetic. In the calculation presented later on (figure 4). 
A-' routinely takes on values of A-' - 3 x IO9, which simply means that a single iteration 
of the algorithm (at very large times of the simulation) corresponds to 3 x IO9 Monte Carlo 
steps per spin! After this time, sampled from (7). the system moves butside C. Now, in 
analogy with the BKL algorithm, we are able to sample in its turn the configuration of C 
(denoted by A in figure 2) from which this move will be made (this probability is simply 
proportional to p q ( j ) p e x t ( j ) ) .  Finally, having identified the configuration ui (E A), we can 
sample the configuration outside C, according to (Z), after having excluded all the moves 
which stay within C. This then produces the configuration denoted by B in figure 2. 

In our current implementation of the algorithm, we then calculate the probability pclusrer 
to return to the cluster from 5, or to move directly to configurations outside the cluster, 
pert. In both cases, the amount of time spent on B is sampled from pSew = 1 -put -pduster. 
We then add B to the cluster and update all the probabilities pert(i) for all members of C, 
whose size, in the meantime, has been incremented. 

A little thought shows that the algorithm just sketched can be implemented recursively, 
and that a single iteration consists of two passes through the cluster. Furthermore, besides 
the configurations (which we keep in external memory), we only need the tables E ( i )  and 
p&), i.e. there is no need for tables which grow faster than the cluster size. In the example 
treated, we can presently, for N = 400, allow up to IO4 members in C. 

To show that the algorithm works, we have tested it against the BKL algorithm. In fact, 
for both algorithms, we have started 300 samples on the same configuration (marked 'X' 
in figure I), and have determined the histogram of trapping times (times after which the 
system accesses a new plateau with lower energy). This histogram is shown in figure 3. 
As can be clearly seen, the distributions of waiting times are identical, which indicates that 
the algorithm is correct for all intents and purposes. Furthermore, it should be evident that. 

. .  .. 
t .  . .  .. . .  , .  . .  . .  . .  
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Figure 3. Histograms of trapping times fcr the two 
algorithms. For this figure, both the BKL algorithm and 
Lhe cluster algorithm presented in this letter were started 
at the point marked 'X' in figure 1. 300 runs of both 
algorithms were done, and the time after which a new 
plateau of lower energy was found was typically between 
f = IO' and t = IO'. 
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Figure 4. M m  energy of the cluster versus log r 
for the Bemasconi model I T = 0.05 (single 39 

38 run of the cluster algorithm). The inset displays ?Lk4 le+03 let05 let07 let09 let11 let13 c~ustel. the energy of new eonfigurations which enter the 

once an old plateau has been left, and a new configuration of minimal energy found, the 
original members of C drop out of the picture. At this point, a new cluster can be started. 

In figure 4 we show the result of a simulation for the same system as in figure 1, but this 
time with the new algorithm. Using the same amount of computer time, we reach physical 
times which are about 10000 times larger. The inset in figure 4 shows the energy of the new 
configurations which enter the cluster. This energy drops as a new plateau is found, and then 
increases (approximately logarithmically in time), as more and more remote configurations 
are encountered during the thermal exploration process. The main plot in figure 4 shows 
the mean energy of the cluster. Note that many more quantities are accessible, such as 
correlation functions, or more detailed properties of the dynamical process. 

Finally we would like to discuss whether the algorithm, as presented, and as sketched 
in figure 2 can be made rigorous. In the present state, we increase the size of the cluster 
by one at any iteration. Clearly, a more rigorous approach would be to add point ‘B’  to 
the cluster only if pext < pior, say if penrlpiot c: y .  The algorithm is equivalent to the BEL 
algorithm for y = 0, but certainly retains some asymptotic validity as y 2 0. The issue at 
hand is that the configurations in the cluster should satisfy a quasi-equilibrium condition, 
which basically means pen << nnt, and which may be implemented with various degrees 
of rigour. 

A second question of course concerns the criterion for abandoning the cluster and 
growing a new one. In our present case we have simply adopted an energy criterion: each 
time a new lowest energy was found, the old cluster was abandoned, and a new one grown. 
The precise criterion will depend on the particular problem. Whenever geomeby plays an 
important role, the cluster may have to be scrapped as soon as the geometrical distances 
between members of the cluster become too large. 

In conclusion, we have presented in this letter an algorithm for the Monte Carlo 
dynamics of glassy systems, which is able to produce enormous gains in efficiency if 
configurations are visited over and over again. In a natural way, the algorithm forms a cluster 
of a certain number of configurations, which are close in energy. These configurations are 
then assumed to be in thermal equilibrium, an assumption which was very well satisfied in 
the example we treated. 
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Finally, we indicate that a FORTRAN source code for the algorithms used in this work 
may be obtained by e-mail. 

We acknowledge helpful discussions with M Mtzard. 
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